
IPSJ SIG Technical Report

Towards Building Computing Clusters of Web
Browsers

Yao Li1 Yasushi Shinjo1

1. Introduction

It is widely practiced to connect PCs over a LAN to form

small HPC clusters. Conventional cluster management soft-

ware such as Apache Mesos and OpenHPC requires a ded-

icated OS installation, making the setup process complex.

While dual-booting allows regular PCs to serve as cluster

nodes, this prevents their use for normal tasks like web

browsing.

Volunteer computing projects like SETI@home and Fold-

ing@home have shown the potential of utilizing idle compu-

tational resources. However, these systems typically require

specific software installation and face cross-platform com-

patibility challenges.

We propose a web browser-based approach to building

computing clusters with the following goals:

• Developing a scalable architecture for dynamic resource

pooling without complex infrastructure, targeting both

small HPC clusters and volunteer computing environ-

ments

• Ensuring zero-installation deployment through stan-

dard web browsers

• Enabling efficient utilization of idle computational re-

sources across the network

• Providing secure execution through browser-based iso-

lation

2. Proposed Method

Figure 1 illustrates the system architecture of our browser-

based computing cluster. The system consists of three main

components:

• Management Web Server: A central server that

coordinates the cluster operations, including task dis-

tribution, resource monitoring, and node management.

The server communicates with nodes through WebRTC.

• PC Nodes: Standard computers connected to the net-

work, each running a web browser.

• Browser Applications: Each browser runs our ap-

plication that provides an isolated runtime environment

for executing distributed tasks.

Our system architecture is built on the following key tech-

1 University of Tsukuba

Fig. 1 Cluster of Web Browsers.

nologies to ensure efficiency, security, and scalability:

• WebAssembly provides high-performance task execu-

tion while maintaining platform compatibility

• WebRTC enables direct peer-to-peer communication

between nodes for efficient data transfer

• Dynamic resource management ensures optimal distri-

bution of computational loads across the cluster

We designed the system to be scalable, allowing for seam-

less joining and leaving of nodes to the cluster. This ar-

chitecture provides a foundation for building efficient and

accessible browser-based computing clusters that can lever-

age idle computational resources across different platforms

and environments.

3. Implementation

Our implementation consists of three main components as

shown in Figure 2: the management web server, the browser-

based virtual machine, and the communication module.

3.1 Management Web Server

The management web server implements two core mod-

ules:

• Task Scheduler: Handles task distribution and load

balancing across nodes. It fragments computational

tasks based on node capabilities and manages task al-

location.

• Resource Monitor: Maintains performance profiles

and monitors node status continuously. It tracks CPU

usage, memory availability, and network conditions to

optimize resource utilization.

3.2 Browser-based Virtual Machine

We support the following two types of execution environ-

ments of applications:

1



IPSJ SIG Technical Report

Fig. 2 System Components.

• Using V86-Based Virtual Machine*1: Provides

x86 emulation capabilities directly in the browser. This

enables task execution in a manner similar to conven-

tional cluster management software.

• Running a single WebAssembly binary in the

WebAssembly Sandbox: Ensures secure and effi-

cient execution through memory isolation and secure

execution boundaries and cross-platform compatibility

across different operating systems.

3.3 Network Communication

The system implements two communication channels with

distinct responsibilities:

• RPC: Handles control communication between the

management server and nodes, including:

– Task distribution and status updates

– Resource monitoring and node management

– Node registration and heartbeat signals

• WebRTC P2P: Enables direct peer-to-peer commu-

nication between nodes through:

– Data channels for efficient resource sharing

– Direct node-to-node task coordination

– Low-latency data transfer between peer nodes

– NAT traversal for direct connectivity

This dual-channel approach optimizes communication ef-

ficiency by:

• Using RPC for reliable server-controlled operations

• Leveraging WebRTC for direct peer communication to

reduce server load

• Maintaining centralized control while enabling decen-

tralized data exchange

3.4 Current Progress

Our initial implementation has established core function-

alities including:

• Basic virtual machine operations through V86

• WebRTC peer discovery and connection establishment

• Task distribution through the management server

• Resource monitoring and basic load balancing

Ongoing work focuses on enhancing system stability, im-

proving task scheduling efficiency, and implementing more

*1 http://copy.sh/v86/

sophisticated resource management strategies.

4. Related Work

BOINC established a framework for volunteer comput-

ing projects [1]. Despite its robust infrastructure, BOINC

requires client software installation. Our browser-based

solution removes this barrier by running directly in web

browsers.

Golem provides a decentralized computing power market-

place for renting computational resources [2]. While effective

for dedicated computing tasks, our approach simplifies par-

ticipation by eliminating the need for specialized software

installation.

Apache Mesos [3] demonstrates effective resource manage-

ment. Building upon these concepts, our system combines

WebAssembly’s efficiency with browser accessibility to cre-

ate a lightweight, platform-independent computing environ-

ment.

5. Conclusion

In this paper, we proposed building web browser-based

computing clusters that provide zero-installation deploy-

ment through standard web browsers, cross-platform com-

patibility, and secure execution through WebAssembly sand-

boxing.

Our initial implementation has established core function-

alities including WebRTC peer discovery and basic virtual

machine operations. While challenges remain in areas such

as browser performance heterogeneity and connection stabil-

ity, this approach demonstrates the feasibility of leveraging

web browsers for distributed computing applications.

References

[1] Anderson, D. P.: Boinc: A system for public-resource comput-
ing and storage, Fifth IEEE/ACM international workshop on
grid computing, pp. 4–10 (2004).

[2] Golem Network: Official Website, https://www.golem.
network/. Accessed: 2024-11-04.

[3] Hindman, B., Konwinski, A., Zaharia, M., Ghodsi, A., Joseph,
A. D., Katz, R., Shenker, S. and Stoica, I.: Mesos: A Plat-
form for Fine-Grained Resource Sharing in the Data Center,
8th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 11), pp. 1–14 (2011).


