IPSJ SIG Technical Report

Towards Developing
Multi-Personal-Node Applications

HAN FENG!

1. Introduction

A single user often simultaneously uses multiple com-
puting nodes, such as a PC and smartphone. We call such
nodes personal nodes. A user can also run a same name
application on multiple personal nodes at the same time.
For example, a user can run a web browser or instant mes-
senger on a PC and a smartphone. In this case, the user
expects to switch and operate in these two personal nodes
and expects the application running on them to have the
ability to share resources and data. Some applications,
such as popular web browsers and the messenger applica-
tion for iOS and macOS provide limited support for shar-
ing by exchanging states through centralized servers. How-
ever, they can not truly achieve seamless user experience
and resource sharing among multiple personal nodes. Fur-
thermore, coordination through central servers can lead to
privacy violations.

In this research, we develop one application that works
across multiple personal nodes. We call such appli-
cations multi-personal-node applications (MPN applica-
tions). When a user uses an MPN application with mul-
tiple personal nodes, the user feels as if the user is using
one application. This way, users can take full advantage
of multiple personal nodes and get a seamless user experi-
ence.

To support the development of MPN applications, we
are implementing a framework. This framework provides
the service discovery mechanism with multicasting and
the distributed service invocation mechanism with Remote
Procedure Calls (RPCs) and event queues. The ultimate
goal of this framework is to let developers have the ability
to develop MPN applications in the same way that they
develop traditional cross-platform applications.

1 University of Tsukuba

YASUSHI SHINJO!

(" Node1(Smartphone) | (Node 2 (PC))

Multi-Personal-Node Application

@T\/w Fl/w—@
A
@ : State
Put
Distributed Bus

Get Synchronization

RPC:
RPC

Put

RPI
RP

(I Event Queue []

Event Queue [j€-----"

Service Modules Service Modules

Camera GPS Pen Keyboard Storage Mouse
Module Module Module Module Module Module

1 v 1 v

(0S 1] (0S 2]
A A A A A

v
Q A7 oo 0
(W 2
Fig. 1 A multi-personal-node application
running on a smartphone and PC.

il

2. Design of the Framework for MPN
Applications

2.1 Overall Architecture

Figure 1 shows the overall architecture of our framework
for MPN applications. In this figure, a single MPN appli-
cation runs on two personal nodes. Node 1 is a smartphone
or tablet, with a camera, GPS, and vibrator, running an
OS like Android or iOS. Node 2 is a PC with a keyboard,
large storage, and mouse, running an OS like Windows
or macOS. A thread runs on an OS and a node, and ex-
changes messages with threads on a local or remote node.
The states are variables, typically bounded to a node, and
accessed by local threads. The MPN application includes a
distributed bus, which provides inter-node communication.
We discuss this in detail in the following section.

In an MPN application, each node can contain service

IPSJ SIG Technical Report

modules to access the OS and hardware devices through
native APIs. For example, an Android node contains the
service modules to access a camera through the Java API
and a macOS node contains the service modules to access
a keyboard through the Objective-C API.

2.2 Distributed Bus

The distributed bus plays a similar role as the dis-
tributed kernel of a distributed operating system. The
distributed bus runs on all personal nodes and provides
inter-node communication with RPCs and event queues.
Events are typically used through callback functions in
many programming languages.

The distributed bus provides a discovery service of ser-
vice modules. In each node, the distributed kernel main-
tains the list of available service modules. These service
modules take charge of accessing specific local hardware
devices. When an application thread tries to use a service
module, it asks the distributed bus to discover the mod-
ule. The distributed bus uses multicast DNS (mDNS) and
publishes the request for the module to the LAN. When
another distributed bus receives the request and the node
has the module, the distributed bus answers the request.
Finally, these two distributed kernels in the two nodes col-
laborate and make the module accessible with RPCs and
event queues.

2.3 MPN Application Styles
We support the development of the following three styles

of MPN applications in our framework.

(1) RPC style
In this style of application, one node is defined as the
core node for each state. Threads running on the core
node access the state directly. Threads running on an-
other node access the state through RPCs and events.
For this purpose, the core node runs the server thread
of the RPC.
The advantage of this style is that it can be used with-
out changing the logic of a traditional application run-
ning on a single node. Since a state resides in a single
node, no update conflicts arise. The weakness of this
style is that if the core node terminates or the network
to the core node is disconnected, the application stops
working.

(2) Mobile Agent Style
This style of application is implemented based on mo-
bile agent technologies. For example, when a user goes
out, the user can move all the states to the smartphone
node and continue running the application.
The weakness of this style is that each node cannot
continue execution independently when communica-
tion between these nodes is lost.

(3) State Replication Style
This style of an application replicates states to mul-
tiple nodes, allowing each to continue execution even
when communication among nodes is lost. Because

state replication is dependent on the semantics of ap-
plications, no general solution exists.

To help maintain consistency across replicas, we
plan to provide Conflict-free Replicated Data Type
(CRDT) support in the distributed bus. A CRDT
is a data structure to grantee eventual consistency in
distributed systems.

3. Related Work

Mobile Plus[1] and FLUID[2] focus on seamless inter-
action at the user experience level, and improve the con-
sistency of the user interface by sharing the state of the
environment across devices. Although they have similar
goals to our research, they focus more on the migration
at the UI level and only support the Android system. In
this research, we aim to develop an MPN application that
simultaneously uses different OSs such as Android and ma-

cOS.
4. Summary

In this research, we are implementing multi-personal-
node applications and the framework for building such ap-
plications. Each multi-personal-node application consists
of a distributed bus, threads, states, and service modules
to access native services of OS and I/O devices. We are im-
plementing MPN applications on an Android smartphone
and a macOS PC. We are interested in converting conven-
tional cross-platform applications into multi-personal-node
applications.

References

[1] Sangeun Oh, Hyuck Yoo, Dae R Jeong, Duc Hoang Bui, and
Insik Shin. Mobile plus: Multi-device mobile platform for
cross-device functionality sharing. In Proceedings of the 15th
Annual International Conference on Mobile Systems, Appli-
cations, and Services, pages 332—-344, 2017.

[2] Sangeun Oh, Ahyeon Kim, Sunjae Lee, Kilho Lee, Dae R
Jeong, Steven Y Ko, and Insik Shin. Fluid: Flexible user in-
terface distribution for ubiquitous multi-device interaction. In
The 25th Annual International Conference on Mobile Com-
puting and Networking, pages 1-16, 2019.

