
IPSJ SIG Technical Report

Gato: Optimizing Multi-Version Deterministic
Concurrency Control with Dynamic Partitioning and

Split-on-Demand

Jiyeon Lim1,a) Haowen Li2,b) Hideyuki Kawashima3,c)

Abstract: In this paper, we introduce Gato, an innovative concurrency control protocol designed to tackle two sig-
nificant challenges prevalent in multi-version deterministic systems, particularly those based on Bohm. The first chal-
lenge pertains to the constraints imposed by static segmentation during the concurrency control stage, while the second
involves performance bottlenecks arising from read spinning in highly contended environments. Gato effectively ad-
dresses these issues through dynamic partitioning that alleviates imbalances and enhances throughput by redistributing
workloads in real time. Additionally, Gato employs a split-on-demand strategy that reduces delays and optimizes
transaction flow during the execution phase. These enhancements enable Gato to emerge as an efficient and scalable
alternative in multi-version deterministic concurrency control, significantly lowering latency and enhancing scalability
across a diverse range of highly contended workloads.

Keywords: Concurrency control, Multi-versioned database, Dynamic partitioning, Deterministic systems, High-
contention

1. Background
Deterministic Concurrency Control aims to minimize conflicts

between transactions by eliminating traditional locking and roll-
back mechanisms, instead of pre-setting the execution order of
database tasks. Bohm [1] has introduced a multi-version deter-
ministic concurrency control protocol that specifies the order of
transactions during the concurrency control phase, allowing for
execution in the execution phase without the need for complex
mechanisms. However, Bohm’s reliance on static partitioning
during the concurrency control phase may result in load imbal-
ances. Additionally, in the execution phase, high-contented sce-
narios can cause delays in read operations until write operations
are completed. To address these issues, Gato incorporates dy-
namic partitioning and split-on-demand techniques in Caracal [2]
to enhance performance in multi-version deterministic concur-
rency control.

2. Research Questions
Bohm employs a system known as multi-version deterministic

concurrency control, which offers several significant advantages.
Transaction processing within Bohm occurs in two phases. First,
it establishes a fixed order for all transactions during the concur-
rency control phase. Next, in the execution phase, transactions

1 Faculty of Policy Management, Keio University, Japan
2 Graduate School of Media and Governance, Keio University, Japan
3 Faculty of Environment and Information Studies, Keio University, Japan
a) limjy19106@keio.jp
b) tony li.haowen@keio.jp
c) river@sfc.keio.ac.jp

are completed in this predetermined order. Consequently, Bohm
functions in a predictable manner, as the transaction sequence re-
mains consistent. However, Bohm faces two primary challenges
when there is high contention for resources:

2.1 Static Partitioning in the Concurrency Control Phase
Bohm employs a static partitioning method where records are

divided into fixed partitions and assigned to each thread during
the concurrency control phase. This approach enables each thread
to process transactions independently, as records are allocated to
specific static partitions. Consequently, this minimizes data ac-
cess conflicts between threads and eliminates the necessity for
partition synchronization. However, a high volume of requests
for particular records can create imbalances, potentially result-
ing in longer transaction processing times for the threads han-
dling those records. This can lead to delays and performance bot-
tlenecks, with other threads remaining idle until the responsible
thread completes its tasks. Additionally, static partitioning com-
plicates the system’s ability to adjust load dynamically, which
restricts overall scalability.

2.2 Read Spinning in the Execution Phase Due to Write De-
pendencies

Bohm is structured in the execution phase to prevent reads
from locking writes. However, this design has several draw-
backs. When a read operation depends on a specific record ver-
sion that has not yet been written, it must enter a ”spinning” state
and wait for the correct version to become available. While this
read spinning is crucial for maintaining consistency, it can lead to

© 2024 Information Processing Society of Japan 1



IPSJ SIG Technical Report

significant delays in high-contention environments where multi-
ple transactions concurrently access and modify the same record.
Additionally, it increases the processing time of subsequent trans-
actions, ultimately reducing the overall throughput of the system.

Bohm’s limitations highlight the necessity for a flexible con-
trol method capable of adapting to variable situations and reduc-
ing delays associated with read dependency. Addressing these
challenges is crucial to ensure that contemporary data-intensive
requirements are effectively met.

3. Contribution: Gato
Gato introduces two significant innovations: a method that em-

ploys dynamic partitioning during the concurrency control phase
and the split-on-demand mechanism of Caracal [2] in the execu-
tion phase. These advancements effectively tackle the limitations
of Bohm previously identified, positioning Gato as a more flexi-
ble and efficient solution in MVDCC. The contributions of Gato
are as follows:

3.1 Dynamic Partitioning Mechanism in the CC Phase
Gato introduces dynamic partitioning to address the limitations

of Bohm’s static partitioning by actively monitoring the workload
of partitions in real time and reallocating them as necessary. Each
partition is managed in a hash table that records the frequency
of access and load status for every record. This enables Gato
to detect real-time scenarios where transaction tasks are concen-
trated in specific threads or where certain records are receiving
excessive access. When a thread reaches an overload state, Gato
reallocates some transaction tasks from the overloaded thread’s
partitions to those that are less congested, effectively preventing
an overconcentration of particular records. For instance, when a
thread receives a transaction operation, it distributes the record
across other partitions to ensure a more balanced workload. This
reallocation occurs in real-time, maintaining a balanced workload
among threads and facilitating efficient resource utilization.

Figure 1 illustrates how Gato’s dynamic partitioning mecha-
nism operates. On the left, all transaction tasks are initially con-
centrated within the CC1 threads, resulting in an overload. On the
right, some records from CC1 are reallocated to CC2 and CC3 as
a result of Gato’s dynamic partitioning, which adjusts the load to
prevent concentration on specific threads. Consequently, Gato en-
hances throughput and reduces latency, offering stable and rapid
performance even in high-contention environments. In this way,
Gato overcomes the inefficiencies associated with static partition-
ing and delivers a scalable solution that adapts to varying condi-
tions.

Fig. 1: Dynamic Partitioning in Gato with Intra-Transaction Paral-
lelism for Load Balancing

3.2 Split-on-Demand Technique in the Execution Phase
During the execution phase of Bohm, a read spinning due to

dependency on write operations may occur. This happens when a
read operation is forced to wait until a write operation completes.
The issue becomes more pronounced when multiple transactions
attempt to access the same record simultaneously, resulting in de-
lays and diminished system performance. To mitigate this, Gato
introduced a technique called Caracal’s split-on-demand, which
effectively separates read and write operations. For instance, if
transaction A is modifying a record while transactions B and
C wish to read the same data, Gato can detect this conflict in
real-time. In such cases, Gato permits the read operations that
can be executed immediately to proceed without waiting for the
write operation to finish, thereby reducing delays. Shared mem-
ory plays a vital role in this process, allowing Gato to monitor
the status of each core in real time and redistribute transactions
as necessary. Each core can swiftly access the latest informa-
tion about a record—such as start and end times, access counts,
and potential contention—through a hash table housed in shared
memory. This capability aids in maintaining cache consistency,
ensuring that each core has the most current data when access-
ing records. By employing split-on-demand techniques alongside
shared memory, Gato significantly diminishes the latency asso-
ciated with read spinning, resulting in enhanced overall perfor-
mance. Consequently, we believe Gato outperforms Bohm by
delivering faster and more reliable performance, even in high-
demand environments, thus supporting efficient transaction pro-
cessing.

4. Conclusion
Enhancements in Gato’s design yield substantial performance

improvements in MVDCC systems. The implementation of dy-
namic partitioning ensures a balanced distribution of transactions,
effectively alleviating bottlenecks and boosting throughput, even
in high-contention scenarios. Furthermore, split-on-demand tech-
niques minimize transaction latency by reducing delays associ-
ated with read spinning. These features position Gato as a highly
adaptable protocol suited for systems that demand both flexibility
and high performance.

Acknowledgments This paper is based on results obtained
from the project ”Research and Development Project of the En-
hanced Infrastructures for Post-5G Information and Communi-
cation Systems (JPNP20017) “ and JPNP16007 commissioned
by the New Energy and Industrial Technology Development Or-
ganization (NEDO), and from JSPS KAKENHI Grant Number
22H03596, and SECOM Science and Technology Foundation.

References
[1] J. M. Faleiro and D. J. Abadi, “Rethinking serializable multiversion

concurrency control,” Proc. VLDB Endow., no. 11, p. 1190–1201, 2015.
[2] D. Qin, A. D. Brown, and A. Goel, “Caracal: Contention management

with deterministic concurrency control,” in Proceedings of the ACM
SIGOPS 28th Symposium on Operating Systems Principles. ACM,
2021, p. 180–194.

[3] A. Thomson, T. Diamond, S.-C. Weng, K. Ren, P. Shao, and D. J.
Abadi, “Calvin: fast distributed transactions for partitioned database
systems,” in Proceedings of the 2012 ACM SIGMOD International
Conference on Management of Data. ACM, 2012, p. 1–12.

© 2024 Information Processing Society of Japan 2


